

Scaling your web applications

From 100k to 100M requests per second

COMMUNITY DAY

Introduction

- 10+ year into the industry
- Worked for enterprises like Oracle, Apple, Twilio
- Expert in Backend, Cloud & DevOps
- Consulted for multiple small & large scale clients
- Technical writer at Geekflare, ButterCMS, MkYong,
 Signoz and other popular platforms
- Presently Principal Engineer @ Twilio Segment

Agenda

- Some facts!
- Hosting a simple web application with database in AWS
- Handling higher traffic for the web application (10k rps)
- Scaling to multiple instances (100k rps)
- Introducing High availability, auto-scaling & fault tolerance
- Going Cloud Native (*)
- 1M rps The Cloud reaches its limits!
- 100M rps Architecting for massive scale

Some facts!

- Amazon Web Services now covers 77 Availability Zones (AZs) in 24 geographic regions across the globe!
- Clouds have limits too :)
- Highest instance memory 24576 Gb
- Highest instance processors 448 logical processors
- EKS cluster can handle a maximum of 13500 managed nodes per cluster!

Hosting a simple web application with database in AWS

- Beanstalk simplifies provisioning as well as deployment
- Uses EC2 as compute
- RDS instance in a small single AZ setup

Handling higher traffic (10k rps)

- Move towards larger instance & database configuration
- Improve compute quality to provide good response time

Scaling further - 100k rps

How did it go?

Scaling to multiple instances - 100k rps

Introducing High availability, auto-scaling & resilience

Going Cloud Native ®

- Easier hosting of microservices
- Easy path based routing using Ingress & path based rules
- Ability to vertically and horizontally auto-scale
- Better monitoring with Operator model based observability agents
- Developer friendly application configuration easy to define resources, scaling rules and routing rules
- Easier internal communication using services

Scaling to 100k rps the cloud native way

1M rps - The Cloud reaches its limits!

ello,

Thank you for clarifying the question

Checking internally the maximum IP that can be assigned to ALB in total is 100 IP.

If you are aware of a sudden increase in load on your load balancer, I would recommend submitting a prewarming request to ensure the are prepared i.e scale to size for this incoming load.

I hope this information is helpful, please let me know if you have additional questions or concerns. I will be glad to assist.

We value your feedback. Please share your experience by rating this and other correspondences in the AWS Support Center. You can rate a correspondence by selecting the stars in the top right corner of the correspondence.

Best regards, Devan

Amazon Web Services

The public-facing ALB serving the ingest endpoint in the US region: api.segment.io is close to hitting the AWS limit of the maximum number of IPs mapped to it(100).

Depending on your traffic profile, the load balancer can scale higher and consume up to a maximum of 100 IP addresses distributed across all enabled subnets.

The number 100 is actually a limitation of the Route53 record created automatically by AWS.

Currently, we are utilising 99 IPs as seen in the output of dig:

y dig +short all.inbound-tracking-api-695313056.us-west-2.elb.amazonaws.com | wc -l
99

100M rps - Architecting for massive scale

100M rps - Cost Efficiency

- App to App communication start going cross-AZ
- Cross-AZ network costs quickly start to add up
- Maintaining all the traffic in single AZ could be a disaster too
- Topology aware services to the rescue

100M rps - Points to look out

- Cross-AZ traffic
- Fallback during a zone failure
- Health checks to auto-failover
- Spikes v/s uniform increase handling the load
- Pre-warming load balancer and Node Pool

